Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Ann Intern Med ; 176(5): 667-675, 2023 05.
Article in English | MEDLINE | ID: covidwho-2302441

ABSTRACT

BACKGROUND: Previous trials have demonstrated the effects of fluvoxamine alone and inhaled budesonide alone for prevention of disease progression among outpatients with COVID-19. OBJECTIVE: To determine whether the combination of fluvoxamine and inhaled budesonide would increase treatment effects in a highly vaccinated population. DESIGN: Randomized, placebo-controlled, adaptive platform trial. (ClinicalTrials.gov: NCT04727424). SETTING: 12 clinical sites in Brazil. PARTICIPANTS: Symptomatic adults with confirmed SARS-CoV-2 infection and a known risk factor for progression to severe disease. INTERVENTION: Patients were randomly assigned to either fluvoxamine (100 mg twice daily for 10 days) plus inhaled budesonide (800 mcg twice daily for 10 days) or matching placebos. MEASUREMENTS: The primary outcome was a composite of emergency setting retention for COVID-19 for more than 6 hours, hospitalization, and/or suspected complications due to clinical progression of COVID-19 within 28 days of randomization. Secondary outcomes included health care attendance (defined as hospitalization for any cause or emergency department visit lasting >6 hours), time to hospitalization, mortality, patient-reported outcomes, and adverse drug reactions. RESULTS: Randomization occurred from 15 January to 6 July 2022. A total of 738 participants were allocated to oral fluvoxamine plus inhaled budesonide, and 738 received placebo. The proportion of patients observed in an emergency setting for COVID-19 for more than 6 hours or hospitalized due to COVID-19 was lower in the treatment group than the placebo group (1.8% [95% credible interval {CrI}, 1.1% to 3.0%] vs. 3.7% [95% CrI, 2.5% to 5.3%]; relative risk, 0.50 [95% CrI, 0.25 to 0.92]), with a probability of superiority of 98.7%. No relative effects were found between groups for any of the secondary outcomes. More adverse events occurred in the intervention group than the placebo group, but no important differences between the groups were detected. LIMITATION: Low event rate overall, consistent with contemporary trials in vaccinated populations. CONCLUSION: Treatment with oral fluvoxamine plus inhaled budesonide among high-risk outpatients with early COVID-19 reduced the incidence of severe disease requiring advanced care. PRIMARY FUNDING SOURCE: Latona Foundation, FastGrants, and Rainwater Charitable Foundation.


Subject(s)
COVID-19 , Adult , Humans , Budesonide/adverse effects , Fluvoxamine , SARS-CoV-2 , COVID-19 Drug Treatment , Treatment Outcome
2.
N Engl J Med ; 388(6): 518-528, 2023 02 09.
Article in English | MEDLINE | ID: covidwho-2234819

ABSTRACT

BACKGROUND: The efficacy of a single dose of pegylated interferon lambda in preventing clinical events among outpatients with acute symptomatic coronavirus disease 2019 (Covid-19) is unclear. METHODS: We conducted a randomized, controlled, adaptive platform trial involving predominantly vaccinated adults with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brazil and Canada. Outpatients who presented with an acute clinical condition consistent with Covid-19 within 7 days after the onset of symptoms received either pegylated interferon lambda (single subcutaneous injection, 180 µg) or placebo (single injection or oral). The primary composite outcome was hospitalization (or transfer to a tertiary hospital) or an emergency department visit (observation for >6 hours) due to Covid-19 within 28 days after randomization. RESULTS: A total of 933 patients were assigned to receive pegylated interferon lambda (2 were subsequently excluded owing to protocol deviations) and 1018 were assigned to receive placebo. Overall, 83% of the patients had been vaccinated, and during the trial, multiple SARS-CoV-2 variants had emerged. A total of 25 of 931 patients (2.7%) in the interferon group had a primary-outcome event, as compared with 57 of 1018 (5.6%) in the placebo group, a difference of 51% (relative risk, 0.49; 95% Bayesian credible interval, 0.30 to 0.76; posterior probability of superiority to placebo, >99.9%). Results were generally consistent in analyses of secondary outcomes, including time to hospitalization for Covid-19 (hazard ratio, 0.57; 95% Bayesian credible interval, 0.33 to 0.95) and Covid-19-related hospitalization or death (hazard ratio, 0.59; 95% Bayesian credible interval, 0.35 to 0.97). The effects were consistent across dominant variants and independent of vaccination status. Among patients with a high viral load at baseline, those who received pegylated interferon lambda had lower viral loads by day 7 than those who received placebo. The incidence of adverse events was similar in the two groups. CONCLUSIONS: Among predominantly vaccinated outpatients with Covid-19, the incidence of hospitalization or an emergency department visit (observation for >6 hours) was significantly lower among those who received a single dose of pegylated interferon lambda than among those who received placebo. (Funded by FastGrants and others; TOGETHER ClinicalTrials.gov number, NCT04727424.).


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Interferon Lambda , Adult , Humans , Bayes Theorem , COVID-19/therapy , Double-Blind Method , Interferon Lambda/administration & dosage , Interferon Lambda/adverse effects , Interferon Lambda/therapeutic use , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Polyethylene Glycols/therapeutic use , SARS-CoV-2 , Treatment Outcome , Ambulatory Care , Injections, Subcutaneous , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19 Vaccines/therapeutic use , Vaccination
3.
Gates Open Research ; 5, 2021.
Article in English | ProQuest Central | ID: covidwho-1835890

ABSTRACT

Background: There remains a need for an effective and affordable outpatient treatment for early COVID-19. Multiple repurposed drugs have shown promise in treating COVID-19. We describe a master protocol that will assess the efficacy of different repurposed drugs as treatments for early COVID-19 among outpatients at a high risk for severe complications. Methods: The TOGETHER Trial is a multi-center platform adaptive randomized, placebo-controlled, clinical trial. Patients are included if they are at least 18 years of age, have a positive antigen test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and have an indication for high risk of disease severity, including co-morbidities, older age, or high body mass index. Eligible patients are randomized with equal chance to an investigational product (IP) or to placebo.The primary endpoint is hospitalization defined as either retention in a COVID-19 emergency setting for greater than 6 hours or transfer to tertiary hospital due to COVID-19. Secondary outcomes include mortality, adverse events, adherence, and viral clearance. Scheduled interim analyses are conducted and reviewed by the Data and Safety Monitoring Committee (DSMC), who make recommendations on continuing or stopping each IP. The platform adaptive design go-no-go decision rules are extended to dynamically incorporate external evidence on COVID-19 interventions from ongoing independent randomized clinical trials. Discussion: Results from this trial will assist in the identification of therapeutics for the treatment of early diagnosed COVID-19. The novel methodological extension of the platform adaptive design to dynamically incorporate external evidence is one of the first of its kind and may provide highly valuable information for all COVID-19 trials going forward. Clinicaltrials.gov registration: NCT04727424 (27/01/2021)

4.
N Engl J Med ; 386(18): 1721-1731, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1768965

ABSTRACT

BACKGROUND: The efficacy of ivermectin in preventing hospitalization or extended observation in an emergency setting among outpatients with acutely symptomatic coronavirus disease 2019 (Covid-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unclear. METHODS: We conducted a double-blind, randomized, placebo-controlled, adaptive platform trial involving symptomatic SARS-CoV-2-positive adults recruited from 12 public health clinics in Brazil. Patients who had had symptoms of Covid-19 for up to 7 days and had at least one risk factor for disease progression were randomly assigned to receive ivermectin (400 µg per kilogram of body weight) once daily for 3 days or placebo. (The trial also involved other interventions that are not reported here.) The primary composite outcome was hospitalization due to Covid-19 within 28 days after randomization or an emergency department visit due to clinical worsening of Covid-19 (defined as the participant remaining under observation for >6 hours) within 28 days after randomization. RESULTS: A total of 3515 patients were randomly assigned to receive ivermectin (679 patients), placebo (679), or another intervention (2157). Overall, 100 patients (14.7%) in the ivermectin group had a primary-outcome event, as compared with 111 (16.3%) in the placebo group (relative risk, 0.90; 95% Bayesian credible interval, 0.70 to 1.16). Of the 211 primary-outcome events, 171 (81.0%) were hospital admissions. Findings were similar to the primary analysis in a modified intention-to-treat analysis that included only patients who received at least one dose of ivermectin or placebo (relative risk, 0.89; 95% Bayesian credible interval, 0.69 to 1.15) and in a per-protocol analysis that included only patients who reported 100% adherence to the assigned regimen (relative risk, 0.94; 95% Bayesian credible interval, 0.67 to 1.35). There were no significant effects of ivermectin use on secondary outcomes or adverse events. CONCLUSIONS: Treatment with ivermectin did not result in a lower incidence of medical admission to a hospital due to progression of Covid-19 or of prolonged emergency department observation among outpatients with an early diagnosis of Covid-19. (Funded by FastGrants and the Rainwater Charitable Foundation; TOGETHER ClinicalTrials.gov number, NCT04727424.).


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Ivermectin , Adult , Ambulatory Care , Anti-Infective Agents/adverse effects , Anti-Infective Agents/therapeutic use , Bayes Theorem , Double-Blind Method , Hospitalization , Humans , Ivermectin/adverse effects , Ivermectin/therapeutic use , SARS-CoV-2 , Treatment Outcome
5.
6.
Lancet Glob Health ; 10(1): e42-e51, 2022 01.
Article in English | MEDLINE | ID: covidwho-1586173

ABSTRACT

BACKGROUND: Recent evidence indicates a potential therapeutic role of fluvoxamine for COVID-19. In the TOGETHER trial for acutely symptomatic patients with COVID-19, we aimed to assess the efficacy of fluvoxamine versus placebo in preventing hospitalisation defined as either retention in a COVID-19 emergency setting or transfer to a tertiary hospital due to COVID-19. METHODS: This placebo-controlled, randomised, adaptive platform trial done among high-risk symptomatic Brazilian adults confirmed positive for SARS-CoV-2 included eligible patients from 11 clinical sites in Brazil with a known risk factor for progression to severe disease. Patients were randomly assigned (1:1) to either fluvoxamine (100 mg twice daily for 10 days) or placebo (or other treatment groups not reported here). The trial team, site staff, and patients were masked to treatment allocation. Our primary outcome was a composite endpoint of hospitalisation defined as either retention in a COVID-19 emergency setting or transfer to tertiary hospital due to COVID-19 up to 28 days post-random assignment on the basis of intention to treat. Modified intention to treat explored patients receiving at least 24 h of treatment before a primary outcome event and per-protocol analysis explored patients with a high level adherence (>80%). We used a Bayesian analytic framework to establish the effects along with probability of success of intervention compared with placebo. The trial is registered at ClinicalTrials.gov (NCT04727424) and is ongoing. FINDINGS: The study team screened 9803 potential participants for this trial. The trial was initiated on June 2, 2020, with the current protocol reporting randomisation to fluvoxamine from Jan 20 to Aug 5, 2021, when the trial arms were stopped for superiority. 741 patients were allocated to fluvoxamine and 756 to placebo. The average age of participants was 50 years (range 18-102 years); 58% were female. The proportion of patients observed in a COVID-19 emergency setting for more than 6 h or transferred to a teritary hospital due to COVID-19 was lower for the fluvoxamine group compared with placebo (79 [11%] of 741 vs 119 [16%] of 756); relative risk [RR] 0·68; 95% Bayesian credible interval [95% BCI]: 0·52-0·88), with a probability of superiority of 99·8% surpassing the prespecified superiority threshold of 97·6% (risk difference 5·0%). Of the composite primary outcome events, 87% were hospitalisations. Findings for the primary outcome were similar for the modified intention-to-treat analysis (RR 0·69, 95% BCI 0·53-0·90) and larger in the per-protocol analysis (RR 0·34, 95% BCI, 0·21-0·54). There were 17 deaths in the fluvoxamine group and 25 deaths in the placebo group in the primary intention-to-treat analysis (odds ratio [OR] 0·68, 95% CI: 0·36-1·27). There was one death in the fluvoxamine group and 12 in the placebo group for the per-protocol population (OR 0·09; 95% CI 0·01-0·47). We found no significant differences in number of treatment emergent adverse events among patients in the fluvoxamine and placebo groups. INTERPRETATION: Treatment with fluvoxamine (100 mg twice daily for 10 days) among high-risk outpatients with early diagnosed COVID-19 reduced the need for hospitalisation defined as retention in a COVID-19 emergency setting or transfer to a tertiary hospital. FUNDING: FastGrants and The Rainwater Charitable Foundation. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Drug Treatment , Emergency Medical Services/statistics & numerical data , Fluvoxamine/therapeutic use , Hospitalization/statistics & numerical data , Adult , Aged , Aged, 80 and over , Brazil , Double-Blind Method , Female , Fluvoxamine/adverse effects , Humans , Male , Middle Aged , SARS-CoV-2 , Selective Serotonin Reuptake Inhibitors/adverse effects , Selective Serotonin Reuptake Inhibitors/therapeutic use , Treatment Outcome
7.
Lancet Reg Health Am ; 6: 100142, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1568912

ABSTRACT

BACKGROUND: Observational studies have postulated a therapeutic role of metformin in treating COVID-19. We conducted an adaptive platform clinical trial to determine whether metformin is an effective treatment for high-risk patients with early COVID-19 in an outpatient setting. METHODS: The TOGETHER Trial is a placebo-controled, randomized, platform clinical trial conducted in Brazil. Eligible participants were symptomatic adults with a positive antigen test for SARS-CoV-2. We enroled eligible patients over the age of 50 years or with a known risk factor for disease severity. Patients were randomly assigned to receive either placebo or metformin (750 mg twice daily for 10 days or placebo, twice daily for 10 days). The primary outcome was hospitalization defined as either retention in a COVID-19 emergency setting for > 6 h or transfer to tertiary hospital due to COVID-19 at 28 days post randomization. Secondary outcomes included viral clearance at day 7, time to hospitalization, mortality, and adverse drug reactions. We used a Bayesian framework to determine probability of success of the intervention compared to placebo. FINDINGS: The TOGETHER Trial was initiated June 2, 2020. We randomized patients to metformin starting January 15, 2021. On April 3, 2021, the Data and Safety Monitoring Committee recommended stopping enrollment into the metformin arm due to futility. We recruited 418 participants, 215 were randomized to the metformin arm and 203 to the placebo arm. More than half of participants (56.0%) were over the age of 50 years and 57.2% were female. Median age was 52 years. The proportion of patients with the primary outcome at 28 days was not different between the metformin and placebo group (relative risk [RR] 1.14[95% Credible Interval 0.73; 1.81]), probability of superiority 0.28. We found no significant differences between the metformin and placebo group on viral clearance through to day 7 (Odds ratio [OR], 0.99, 95% Confidence Intervals 0.88-1.11) or other secondary outcomes. INTERPRETATION: In this randomized trial, metformin did not provide any clinical benefit to ambulatory patients with COVID-19 compared to placebo, with respect to reducing the need for retention in an emergency setting or hospitalization due to worsening COVID-19. There were also no differences between metformin and placebo observed for other secondary clinical outcomes.

8.
Br J Clin Pharmacol ; 87(9): 3425-3438, 2021 09.
Article in English | MEDLINE | ID: covidwho-1494607

ABSTRACT

AIMS: We propose the use of in silico mathematical models to provide insights that optimize therapeutic interventions designed to effectively treat respiratory infection during a pandemic. A modelling and simulation framework is provided using SARS-CoV-2 as an example, considering applications for both treatment and prophylaxis. METHODS: A target cell-limited model was used to quantify the viral infection dynamics of SARS-CoV-2 in a pooled population of 105 infected patients. Parameter estimates from the resulting model were used to simulate and compare the impact of various interventions against meaningful viral load endpoints. RESULTS: Robust parameter estimates were obtained for the basic reproduction number, viral release rate and infected-cell mortality from the infection model. These estimates were informed by the largest dataset currently available for SARS-CoV-2 viral time course. The utility of this model was demonstrated using simulations, which hypothetically introduced inhibitory or stimulatory drug mechanisms at various target sites within the viral life-cycle. We show that early intervention is crucial to achieving therapeutic benefit when monotherapy is administered. In contrast, combination regimens of two or three drugs may provide improved outcomes if treatment is initiated late. The latter is relevant to SARS-CoV-2, where the period between infection and symptom onset is relatively long. CONCLUSIONS: The use of in silico models can provide viral load predictions that can rationalize therapeutic strategies against an emerging viral pathogen.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Computer Simulation , Humans , Pandemics , SARS-CoV-2/drug effects , Viral Load
9.
Br J Clin Pharmacol ; 87(9): 3439-3450, 2021 09.
Article in English | MEDLINE | ID: covidwho-1373788

ABSTRACT

AIM: We hypothesized that viral kinetic modelling could be helpful to prioritize rational drug combinations for COVID-19. The aim of this research was to use a viral cell cycle model of SARS-CoV-2 to explore the potential impact drugs, or combinations of drugs, that act at different stages in the viral life cycle might have on various metrics of infection outcome relevant in the early stages of COVID-19 disease. METHODS: Using a target-cell limited model structure that has been used to characterize viral load dynamics from COVID-19 patients, we performed simulations to inform on the combinations of therapeutics targeting specific rate constants. The endpoints and metrics included viral load area under the curve (AUC), duration of viral shedding and epithelial cells infected. Based on the known kinetics of the SARS-CoV-2 life cycle, we rank ordered potential targeted approaches involving repurposed, low-potency agents. RESULTS: Our simulations suggest that targeting multiple points central to viral replication within infected host cells or release from those cells is a viable strategy for reducing both viral load and host cell infection. In addition, we observed that the time-window opportunity for a therapeutic intervention to effect duration of viral shedding exceeds the effect on sparing epithelial cells from infection or impact on viral load AUC. Furthermore, the impact on reduction on duration of shedding may extend further in patients who exhibit a prolonged shedder phenotype. CONCLUSIONS: Our work highlights the use of model-informed drug repurposing approaches to better rationalize effective treatments for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , SARS-CoV-2 , Drug Combinations , Humans , Kinetics , SARS-CoV-2/drug effects
10.
Lancet Glob Health ; 9(5): e711-e720, 2021 05.
Article in English | MEDLINE | ID: covidwho-1189095

ABSTRACT

COVID-19 has had negative repercussions on the entire global population. Despite there being a common goal that should have unified resources and efforts, there have been an overwhelmingly large number of clinical trials that have been registered that are of questionable methodological quality. As the final paper of this Series, we discuss how the medical research community has responded to COVID-19. We recognise the incredible pressure that this pandemic has put on researchers, regulators, and policy makers, all of whom were doing their best to move quickly but safely in a time of tremendous uncertainty. However, the research community's response to the COVID-19 pandemic has prominently highlighted many fundamental issues that exist in clinical trial research under the current system and its incentive structures. The COVID-19 pandemic has not only re-emphasised the importance of well designed randomised clinical trials but also highlighted the need for large-scale clinical trials structured according to a master protocol in a coordinated and collaborative manner. There is also a need for structures and incentives to enable faster data sharing of anonymised datasets, and a need to provide similar opportunities to those in high-income countries for clinical trial research in low-resource regions where clinical trial research receives considerably less research funding.


Subject(s)
Biomedical Research/trends , COVID-19/epidemiology , Global Health , Humans , Randomized Controlled Trials as Topic
11.
Br J Clin Pharmacol ; 87(9): 3388-3397, 2021 09.
Article in English | MEDLINE | ID: covidwho-1060954

ABSTRACT

During a pandemic caused by a novel pathogen (NP), drug repurposing offers the potential of a rapid treatment response via a repurposed drug (RD) while more targeted treatments are developed. Five steps of model-informed drug repurposing (MIDR) are discussed: (i) utilize RD product label and in vitro NP data to determine initial proof of potential, (ii) optimize potential posology using clinical pharmacokinetics (PK) considering both efficacy and safety, (iii) link events in the viral life cycle to RD PK, (iv) link RD PK to clinical and virologic outcomes, and optimize clinical trial design, and (v) assess RD treatment effects from trials using model-based meta-analysis. Activities which fall under these five steps are categorized into three stages: what can be accomplished prior to an NP emergence (preparatory stage), during the NP pandemic (responsive stage) and once the crisis has subsided (retrospective stage). MIDR allows for extraction of a greater amount of information from emerging data and integration of disparate data into actionable insight.


Subject(s)
Drug Repositioning , Pandemics , Research Design , Retrospective Studies
12.
Infect Drug Resist ; 13: 4577-4587, 2020.
Article in English | MEDLINE | ID: covidwho-999915

ABSTRACT

PURPOSE: A multitude of randomized controlled trials (RCTs) have emerged in response to the novel coronavirus disease (COVID-19) pandemic. Understanding the distribution of trials among various settings is important to guide future research priorities and efforts. The purpose of this review was to describe the emerging evidence base of COVID-19 RCTs by stages of disease progression, from pre-exposure to hospitalization. METHODS: We collated trial data across international registries: ClinicalTrials.gov; International Standard Randomised Controlled Trial Number Registry; Chinese Clinical Trial Registry; Clinical Research Information Service; EU Clinical Trials Register; Iranian Registry of Clinical Trials; Japan Primary Registries Network; German Clinical Trials Register (up to 7 October 2020). Active COVID-19 RCTs in international registries were eligible for inclusion. We extracted trial status, intervention(s), control, sample size, and clinical context to generate descriptive frequencies, network diagram illustrations, and statistical analyses including odds ratios and the Mann-Whitney U-test. RESULTS: Our search identified 11503 clinical trials registered for COVID-19 and identified 2388 RCTs. After excluding 45 suspended RCTs and 480 trials with unclear or unreported disease stages, 1863 active RCTs were included and categorized into four broad disease stages: pre-exposure (n=107); post-exposure (n=208); outpatient treatment (n=266); hospitalization, including the intensive care unit (n=1376). Across all disease stages, most trials had two arms (n=1500/1863, 80.52%), most often included (hydroxy)chloroquine (n=271/1863, 14.55%) and were US-based (n=408/1863, 21.90%). US-based trials had lower odds of including (hydroxy)chloroquine than trials in other countries (OR: 0.63, 95% CI: 0.45-0.90) and similar odds of having two arms compared to other geographic regions (OR: 1.05, 95% CI: 0.80-1.38). CONCLUSION: There is a marked difference in the number of trials across settings, with limited studies on non-hospitalized persons. Focus on pre- and post-exposure, and outpatients, is worthwhile as a means of reducing infections and lessening the health, social, and economic burden of COVID-19.

13.
Am J Trop Med Hyg ; 104(1): 35-38, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-946095

ABSTRACT

The efficacy and safety of hydroxychloroquine (HCQ) for the prevention and treatment of COVID-19 has received great attention, and most notably, the enthusiasm for HCQ has been one of politicization rather than science. Laboratory studies and case series published early in the pandemic supported its efficacy. The scientific community raced to conduct observational and randomized evaluations of the drug in all stages of the disease, including prophylaxis, early treatment, and advanced disease. Yet a divisive media response affected recruitment, funding, and subsequent enthusiasm for continuing scientific investigations. Of the more than 300 HCQ trials registered, fewer than 50% report having recruited any patients, and most trials might fail to achieve any useful portions of their intended sample size. Multiple observational studies and two large randomized trials have demonstrated HCQ does not offer efficacy against COVID-19 in hospitalized patients. Prophylaxis studies and early treatment studies provided heterogeneous results and are plagued by low event rates and poor study outcome monitoring. Emerging high-quality evaluations of prophylaxis and early treatment do not support a role for HCQ in these populations. The story of HCQ for COVID-19 has followed a pattern of initial enthusiasm supported by poor quality evidence, followed by disappointment based on more rigorous evaluations. The experience of HCQ in the COVID-19 era calls for the depoliticization of science away from media glare.


Subject(s)
Antimalarials/therapeutic use , COVID-19 Drug Treatment , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Cardiovascular Diseases/chemically induced , Humans , Hydroxychloroquine/adverse effects , Politics , Treatment Outcome
14.
Infect Dis Ther ; : 1, 2020 Nov 09.
Article in English | MEDLINE | ID: covidwho-926091

ABSTRACT

[This corrects the article DOI: 10.1007/s40121-020-00349-8.].

15.
Infect Dis Ther ; 9(4): 715-720, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-866291

ABSTRACT

Antivirals have demonstrated efficacy in treating other infectious diseases in early stages of disease, reducing morbidity, mortality, and the likelihood of onward transmission. At the time of writing, more than 1900 clinical trials are registered globally to assess the efficacy and safety of candidate therapeutics for COVID-19. The majority of these trials are designed to evaluate the comparative efficacy and safety of candidate therapeutics for the treatment of COVID-19 to prevent death among populations of hospitalized patients with advanced disease. Yet, emerging epidemiological evidence now indicates that the majority of those infected with the SARS-CoV-2, while still infectious, experience minimal or mild disease symptomology. Like HIV and hepatitis C that pioneered treatment as prevention, there is a missed opportunity for trials of early pharmaceutical intervention for COVID-19 disease evaluating not only reductions in morbidity and mortality but also transmissibility. We discuss this clinical research gap within an historical context of viral treatment as prevention for HIV and hepatitis C, and comment on the challenges and opportunities for clinical research of candidate therapeutics for early COVID-19 disease.

16.
Am J Trop Med Hyg ; 103(4): 1364-1366, 2020 10.
Article in English | MEDLINE | ID: covidwho-727473

ABSTRACT

As the global COVID-19 pandemic continues, unabated and clinical trials demonstrate limited effective pharmaceutical interventions, there is a pressing need to accelerate treatment evaluations. Among options for accelerated development is the evaluation of drug combinations in the absence of prior monotherapy data. This approach is appealing for a number of reasons. First, combining two or more drugs with related or complementary therapeutic effects permits a multipronged approach addressing the variable pathways of the disease. Second, if an individual component of a combination offers a therapeutic effect, then in the absence of antagonism, a trial of combination therapy should still detect individual efficacy. Third, this strategy is time saving. Rather than taking a stepwise approach to evaluating monotherapies, this strategy begins with testing all relevant therapeutic options. Finally, given the severity of the current pandemic and the absence of treatment options, the likelihood of detecting a treatment effect with combination therapy maintains scientific enthusiasm for evaluating repurposed treatments. Antiviral combination selection can be facilitated by insights regarding SARS-CoV-2 pathophysiology and cell cycle dynamics, supported by infectious disease and clinical pharmacology expert advice. We describe a clinical evaluation strategy using adaptive combination platform trials to rapidly test combination therapies to treat COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Drug Therapy, Combination/methods , Epidemiologic Research Design , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Combinations , Drug Repositioning/methods , Humans , Interferon beta-1b/therapeutic use , Lopinavir/therapeutic use , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Ribavirin/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2
18.
Clin Transl Sci ; 13(4): 646-648, 2020 07.
Article in English | MEDLINE | ID: covidwho-343680

ABSTRACT

The global response to finding therapeutics for coronavirus disease 2019 (COVID-19) is chaotic even if well intentioned. There is an opportunity, but more importantly, an obligation for the global clinical and quantitative pharmacology community to come together and use our state-of-the-art tools and expertise to help society accelerate therapeutics to fight COVID-19. This brief commentary is a call to action and highlights how the global pharmacology community should contribute to the COVID-19 pandemic and prepare for future pandemics.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Approval/organization & administration , Drug Development/organization & administration , Drug Discovery/organization & administration , Pharmacology, Clinical/organization & administration , Pneumonia, Viral/drug therapy , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Dose-Response Relationship, Drug , Drug Dosage Calculations , Humans , Pandemics , Patient Safety , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Time Factors , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL